Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment
نویسندگان
چکیده
An adjustment scheme for the regularization parameter of a Moreau-Yosida-based regularization, or relaxation, approach to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method utilizes error estimates of an associated finite element discretization of the regularized problems for the optimal selection of the regularization parameter in dependence on the mesh size of discretization and error estimates for the approximation error due to regularization. The theoretical results are verified numerically. Mathematics Subject Classification (2000): 49M15, 49M37, 65K05, 65N12, 65N30, 90C33
منابع مشابه
Optimization with Partial Differential Equations
An adjustment scheme for the regularization parameter of a Moreau-Yosida-based regularization, or relaxation, approach to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method utilizes error estimates of an associated finite element discretization of the regularized problems for the optimal selection of the regularization parameter in ...
متن کاملSufficient Optimality Conditions for the Moreau-yosida-type Regularization Concept Applied to Semilinear Elliptic Optimal Control Problems with Pointwise State Constraints∗
We develop sufficient optimality conditions for a Moreau-Yosida regularized optimal control problem governed by a semilinear elliptic PDE with pointwise constraints on the state and the control. We make use of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept, for which standard second order sufficient conditions have been shown. Mo...
متن کاملAdaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations
We study a posteriori error estimates for the numerical approximations of state constrained optimal control problems governed by convection diffusion equations, regularized by Moreau-Yosida and Lavrentiev-based techniques. The upwind Symmetric Interior Penalty Galerkin (SIPG) method is used as a discontinuous Galerkin (DG) discretization method. We derive different residual-based error indicato...
متن کاملPreconditioners for state-constrained optimal control problems with Moreau-Yosida penalty function
Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to ...
متن کاملPath-following techniques in PDE-constrained optimization with low multiplier regularity
where ≤ denotes the ordering in L2(ω). By duality theory, the Lagrange multiplier associated with the inequality constraint involving x1 is assumed to exhibit low regularity only, i.e., it does not admit a pointwise interpretation. On the other hand, the multiplier pertinent to φl ≤ x2 ≤ φu is supposed to be regular and the mapping x2-to-adjoint state is assumed to be smoothing. The regularizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009